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Abstract. The dmrcal b i t  of a q u d u m  syrtem with one depee of freedom is 
emmined ill terms of the ccntraction of the underlyirrg notwompact kinematical al- 
gebra WI (the Weyl-Hei=nbergalgebra) to the three-dimensiond Abeliaq algebr., ti. 
An appropriate delimitioo oi the contraction of a Lie algebra and ofa sequence of its 
representations is given. For some quantum syst- with simple exptiLitly integrable 
dynarme. it is shown how the classical Poisson bracket and classical trajectories are 
obtained in the limit. Each trajectory is associated with a one-dimensional repre- 
sentation of Lg wrthin B & r a t  integral of such representations in a Hilbert space. 
Ea& of the compondrng generalized one-dmensional subspaces is stable under the 
action of the limiting dpam:cs, and a supmeletion rule arises naturally between 
any two such subspaces. 

1. Introduction 

The relationshlp between a quantum mechanicd system and its classical counterpart, 
and the way in which the classical description can be obtained as a limiting form Qf 
the quantum mechanical one, have been topics of much discussion since the earliest 
days of quantum mechanics. Ehrenfest’s work [I] is widely known, and most books on 
quantum mechanics include some discussion of this topic, often in t e r m  of the WJKB 
approximation LZ]. 

The present work is concerned with an approach to this question in Lie algebraic 
terms, with a central role being played by the contraction of representations of the 
relevant Lie algebras and rheir enveloping algebras 131. It is well known that taking the 
classicsl limit, in the formal sense of Planck’s constant tr going to zero, can be viewed 
in terms of a contraction of the underlying kinematical algebra, the Weyl-Heisenherg 
algebra w,, for a system with n degrees of freedom, to an Abelian Lie algebra 
of the same dimension. However, there does not appear to be any specific discussion 
in the literature of the behaviour of the represenfations of .VI, and involved 
in the taking of the classical limit, when viewed as a contraction. The aim of this 
paper is to present such a discussion, in the first instance for systems with a single 
degree of freedom, and a central role will be played in what follows by the contraction 
of a sequence of infinite-dimensional Hermitian matrix representations 61 wl ,  to a 
direct integral of one-dimensional irreducible representations of ts.  It  has been found 
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necessary to employ a modified definition of the contraction of a Lie algebra and of its 
represeiltations by the method of sequences of representations, those previously given 
[3,4] being not quite suitable for this purpose. 

An aspecc of the classical limit that is not dealt with very directly in other ap- 
proaches, is the way in which the Hilbert space structure of the quantum formalism 
is connected to the phase space structure of the classical formalism, with the prin- 
cipal objects of interest being linear operators on Hilbert spaces in the former, and 
functions Gn phase spaces in the latter. In the present approach, the apparatus of Lie 
algebra generators (operators), acting on a Hilbert space, inevitably survives in the 
conlraction limit. However, this apparatus, considered in t,he Heisenberg picture of 
quantum mechanics, can be related in a very direct way to the usual description of 
a classical dynamical system in terms of canonical position and momentum variables 
q , p .  trajectories in phase space, Poisson brackets, etc, mainly because the quantum 
mechanical operators p and p commute in the contraction limit and are diagonal on 
the one-dimensional irrehcible representations of t,, and also because a superselec- 
tion rule arises between any two of the one-dimensionai Limiting representations of 
tg and, at least for some simple model systems considered, this snperselecfion rule is 
stable under the dynamics of the system. The Hilbert space becomes in effect a union 
of one-dimensional subspaces, corresponding to the points in phase space [5]. 

Although only quantum mechanical systems with a single degree of freedom are 
considered in this paper, there is a natural and straightforward generalization of the 
ideas involved to systems with n degrees of freedom. On the other hand, it has not 
yet been possib!; to push those ideas through to completion for any non-integrable 
system, and that should certainly be the subject of future investigation. Such systems 
have been the focus of mnch attention in recent discussions of the classical Emit 161 
In what follows, recove:y of classicai trajectories is demonstrated for linear systems, 
and also for an explicitly integrable nonlinear system which has been discussed in the 
literature [7-91 as one exemplifying some differences between quantum mechanics and 
classical mechanics. 
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2. Contraction of Lie algebras and their representations 

There have heen several definitions in the literature [3,4] of contractions of Lie algebras 
and Lie groups, and of their representations, hat  none is quite sr!i:able for the purpose 
here. Accordingly, a slightly modified definition is first presented of the contraction 
of a Lie algebra, and of the contraction limit of a sequence of its representations. 

Definition 2.1. Contmctron of a Lie algebm 
Let S be a real Lie algebra with generators Xi, i = 1,. . . , N, satisfying the bracket 
relations [X,,XJ] = E:=’=, c i X k ,  where the c t  are structure constants of the algebra. 
Consider new generators of the form X: = P s X i ,  6 > 0, a, 2 0, (i = 1,. . . , N), the a, 
being not all zero, and such that for all i, j ,  k = 1 , .  . . , N, a, + aJ - ak 0 whenever 
c$ # 0. These X: satisfy the relations 
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The Lie algebra G' thrrt results from a contraction of G with given 01, has generators x, with 

N 

Remarks 
(1) The L appearing in this definition will be called the contraction parameter and the 
01, will be called the contraction indices. It is not necessary for the contractlon lndlces 
to be non-negative integers. 
(2) The12 1s always at  least one set of contraction indices 01, satisfying the condition 
ai +a, - 0 1 ~  0 for an arbitrary Lie algebra 8. For example, by setting a, E 01 > 0 
the corkaction to the Abelian Lie algebra t ,  of dimension N is obtained. 
(3) The Lie algebra 9' obtained by a contraction is always non-compact [4] even 
though 8 may be either compact or non-compacf. 
(4) Different choices of the a, can lead to the same contracted algebra. 

Dejinitron 2.2. Conlmctron hmrt of a sequence of represenlatrons of a Lie algebra 
Consider the contraction of one Lie algebra to another (G -+ G=j as defined above. 
(1) F o r m =  l , Z ,  ..., 
(a) Let 'H, denote a Hilbert space with inner product (.,.),,,, and let {+(,,,).}EO 
denote a hasis in 'H,,, orthonormal with respect to that inner product. Let S, denote 
the linear span of this set of vectors (that is, S, is the dense subspace of 'h!, conslstivg 
of all finite linear combinations of the vectors +(,,,p, r = 0,1, .  . .). 
(b) Let U,,, denote a representation of on S, (so that S,,, is a common invariant 
dense domain fm the operators .,,,(Xi) , i = 1 , .  . . , N ) .  
(e) Set [x,,,(Xi)],, = (q+,,,),,r,,,(X,)+~,,,)J, for i = l , . .  .,N and all non-negative 
integers r, s. 
jd) Suppose that, rm(X,) is column-finite. More precisely, suppose that, for each non- 
negative integer s, [r,,,(X,)],. = 0, for r > K S ,  where K ,  may depend on s but must 
be independeni oi m. 
(2) (a) Let 'H, denote a Hilbert space with inner product (. , .),. Let t+(m)T}Eo 
denote a bask in 'H-, orthonormal with respect to ( .  ,.), and let S, denote the 
linear span of these vectors. 
(h) Let x, denote a representation of the Lie algebra 8' on S, where S' is the 
contraction of the Lie algebra G with contraction indices ai defined as above. 
(cj Set [rm(if,jjra = [q , )r ,rm(~j+~mlsjm for i = i ,..., N ;  and aii non-negative 
integers r, s, where the 4 are generators of 9'. 
(3) Let {f,,,}z==l denote a sequence of real positive numbers such that lim,,,-m r,,, = 0. 

The representation x, is called a contraction limit of the sequence of representa- 
tions { ~ , } z = ~  if 

,. 

m-m lim !fs)o*!rJXs)]ra = !um!T)jrz (3) 

for i = 1,. . . , N and all non-negative integers r,s. 
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Remarks (1) The contraction limit can depend on the choice of bases in S,,,, m = 
1,2,. . . This may appear to be a deficiency of the definition, but as will be seen 
below, the consequent flexibility is important 
(2) The condition l(d) is included to guarantee that 
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for arbitrarily large hut finite products of the generators. In effect, this condition 
ensures that the sequence of representat,ions of the enveloping algebra of G (which is the 
algebra spanned by linear combinations of arbitrary finite products of the generators) 
is cmtracted to a representation of the enveloping algebra of G'. 
(3) In a particular case, [r,(X,)],, may be non-zero only for r,s < N ,  < W. This 
definition can therefore accommodate the case of a sequence of finite-dimensional 
representations of increasing dimension being contracted to an infinite-dimension rep- 
resentation. I t  is not necessary that the representations .,,, or the representation xw 
be irreducible. 
(4) This definition does not preclude the possibility that the representation of G' 
obtained in the contraction limit may be unfaithful; in particular, that [r,(Y,)],, 
may vanish for all r,s, for some i 

3. Contraction of representatians of w, to representatians oft, 

Let i , n  be a pair of boson creation and annihilation operators. By that is meant in 
particular that 
(1) there is a dense subspace D of a Hilbert space 'H invariant under the action of 
the boson operators, on which n and 6 are Hermitian conjugate to each other, and on 
which [a,E] = 1 where 1 is the identity operator on 71; and 
(2) D contains a 'vacuum vector' E o ,  normalized with respect to the inner product 
( .  ,.) on 'H and such that ato = 0. Consequently, it also contains the orthonormal 
vectors & = (l/d?)iir&, for r = 0,1,, . ., which are assmned to form a basis in 'H. 

The action of the boson ogerators 0.2 these vectors is given by the equations 

QF, = fi€?-., atr = mFF+l (5) 

and so 6, is an eigenvector of the number operator N = iia with eigenvalue P. 

relations 
The Lie algebra wi has three generators X,,X,,X,, which satisfy the bracket 

[Xi,X,]=ifiX3 [x,,X,] =[X,,X31=0. (6) 

In quantum mechanics, the generators X,,X, are associated with position and mc- 
mentum variables, respectively, and f i  i s  the modified Planck constant. More precisely, 
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quantum mechanics utilizes the hoson representation of usi (or one equivalent to it) 
which can be defined on U hy setting 

where A and K are fixed length and momentum scales respectively satisfying AK = h. 
These representatives are Hermitian on U with respect to ( , .), and their matrix 
eiements are determined from (5) by the equations 

I€, = E ,  

The Lie algebra wi is contracted to t ,  by setting X; = r X , ,  X; = d,, Xi = X,, 
where is the contraction parameter The bracket relations satisfied by the contracting 
generators are then 

[X; ,X;]  = ie'hXi [X; ,X;]  = [X; ,X;]  = 0 (9) 

and the first of these formally vanishes in the contraction limit, so that tb3  bracket 
relations reduce to those definicg t,, that is, [y,, %] = 0 for i , ~  = 1,2,3. 

The folloiving result IS the key to the subsequent discussion. 

Theorem. Choose a dimensionless constant C 2 0 Then there is a sequence of matrix 
representations { R , , J ~ = ,  of wi, each equivalent to the hoson representation R of (7) 
and acting on a subspace S, of X,, whose contraction lirmt is a representation ww 
of t, acting on a subspace S, of H,. This representation is a direct integral of 
irreducible one-dimensional Hermitian representations with 

P, = n e[& sin 01 d0 

I, = [ 8+[1]d0 

and 

where 
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PmoJ 
equivalent representations x, of wl, labelled by m = 1,2.  . ., where for each m 

R J B Fawcelt and A J Bracken 

Let [a] denote the integer part of the real number a Consider a sequence of 

.,(XI) = Q .,(Xz) = P ~m(X3) = I (13) 

as in (E), with the basis {4(,,,),}Eo of a,,, described by 

where M ,  = [(m] For each m, the value of cm is chosen to be 1 fJ;;; It is convenient 
to set Q, = E,&, P, = r,P. I, = I. Matrix elements of Q,, P,, I,,, follow from 
(S), (13) and (14). which imply that 

1,4(,,, = 4(,), r = 0, 1,2,  



Classrcnl hmtt as a confmclion 2749 

-1K 
P,d(,),M,"+I = 7 + 5 K T i # [ m ) 2 M , " - 1  - m 3 4 p 4 2 M m + 2 )  

A 
~ , d ( , ) ~  = Jz;;;(J;+,,).-i + J;rF-i$(,),+i) 

P,d,,), = ,=(JFO(,),~, - m o ( , , 7 + I )  

r > 2Mm + 1 

(15) 
-ik 
J2m 

p > 2Mm f 1. 

For example, the matrix of Q, is given in table 1. 

the Hilbert space 71, with basis vectors {c$(,),}E, are found from (15) to be 
The matrix elements of the limting operators Q,, P,, i, of (12), expressed on 

L A ( , ) r  = ",), r = 0 . 1 , 2 .  .. 

Q,Q(,)o = .\m(4,12 +Q<,;I) 

P,"m)o = - l ~ d D ( # ( m ) z  - ++(m)i) 

Q , h ) l  = h " d J ( , ) O  +4(,)3) 

PA[+ = - iKJFTZ(d(,)n - 4(,;3) 

Q,4(,jz, = xt!g5(Lp(m;ir+i + 4(,;2,-2) r =  ? ,2 , . .  

pm4m)2r = - w m ( 4 m ) 2 r + 2  - ,#(,p-2) r =  1,2, . 

Qm4(,)2,-1 = A f i ( $ ( , p - 3  +4,;zr+1) r = 2,3, . 

Pm4(mpr-~ = - i d 5 5 ( 4 , ) 2 r - 8  - 4(m)2,+1) r = 2 ,3 , . .  (16) 

For exampie, the matrix of Q, is given in tabie 2. 
It can then be checked that on the linear span S, of these basis vectcrs 

[Qw.P,I = [Q,, U =  [P,, 1-1 = 0 (17) 

defining a representation xm oft, There is an equivalent and more compact way of 
describing the representations xm and x,. This IS done by rewriting the basis of X,,, 
in the form 

w(m)rl$(,)r =€,+Mm.r 2 -'%I (18) 

and the basis of 71, in the form 

{+~,),111(,)-,=~(,)2~,'=0,1,2,. ;$(m),=6(m)ar-1,r= L%.. }. (19) 

Then 

A 
Qm+(m)r = x ( m $ ( m ) P - i  + m + ( m ) r + l )  

P,+(,)? = -%dKG+(m)r-, ..& - d W $ ( , ) , + J  (20) 

I,$(,), = +(,I, 
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0 0 3 0 0 0  

Y 

t 
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for all integers P 2 -M,,,, and in the contraction limit 

&,$(,,. = h"4(m)r-* +$(,).+I) 

P,$(,)~ = - i d P ( + ( , ) p - i -  ~ + ~ ) , + l )  (21) 

'm$(m,. = $(CoJ8 

(&$/A2 + p:/~')$(,p = 2C+(,), 

for all integers P It IS more easily checked that (17) hold on this set of basis vectors 
it is aiso noted from jaij that 

(22) 
and thus (11) holds for the representation of tg obtained here. Appropriate minor 
adjustments have to be made, here and below, to accommodate the special case < = 0 

It can be seen as follows that the representation oft, obtained here is a direct 
integral of one-dimensional Hermitian representations. 

Let ( , - j, be the inner product of the Biibert space %, with respect to which 
the $(,,, are orthonormal for all integers T, and let I, be the identity operator on 
31,. Also introduce the dual space 7, of S,, whose elements (linear functionals on 
S,j are associated with all formal vectors of the form Cz- ,  c ~ $ ( , ) ~ ,  where the cr 
a e  arbitrary complex numbers. The commuting operators Q,, P,, I, have common 
generalized eigenvectors in 7,. They have the form 

1 2r = - 1 e-"'*,(C,8) de. 
G o  

This completes the proof of the theorem 

The reducible (direct integral) representation of t ,  obtamed here in the contraction 
limit is effectively parameterized by the real number C. The possibility of obtaining 
direct sum mmbinations of representations of this type, corresponding to a range 
of C values, is discussed in the appendix where a method of construction of such 
representations is outlined. 
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Table 2. Matrix of Q-. 

0 l l 0 0 0 0  
1 0 0 1 0 0 0  
l 0 0 0 l 0 0  
0 l 0 0 0 1 0  

O O O l O n O  
0 0 0 0 1 0 0  

Q".=A& 0 1 i 
4. The classical limit of a quan tum system with a single degree of freedom 

Consider now a quantum system with a single degree of freedom, kinematical algebra 
w l ,  and a timeindependent Hamiltonian operator H. The representation of w, IS 

spanned by operators Q, P, I as in (7), acting on 71 
Suppose H can he written as a polynomial in Q and P .  More precisely, suppose 

it can be written in the form 

H =  umlmo $(QmlP"* + P"'Q"') (28) 
Qbm,,m. 

m,+m,QN 

where the amlm2 are real constants of the appropriate dimensions and N is some 
positive int,eger. In this form, the Hamiltonian operator is Hermitian with respect to 
(. , .), it  will he supposed that H is also self-adjoint with respect to this inner product. 
More general terms in H of the form Q"' PnlQmzPna . . , could be considered, but this 
would not substantially alter the discussion 

The time dependence of the quantum operators in the Aeisenherg picture is given 
by the operator differential equations 

Formal solutions to these equations have the form 

Q(t) = V(t)tQ(O)U(t) P ( t )  = U(t)tP(O)U(t) 
I ( t )  = I(0) U ( t )  = eH(Q(0).P(Q)jfll~ (30) 

where U(t) is the unitary evolution operator. 
The corresponding classical Hamiltonian system has a Hamiltonian function 
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and dynamical equations 

m2am,m2qm1pma-1  

E m l a , , , z q m l - l p m a .  

. aH * = - =  
o<m,,m2 

ml+ma<N 
(32) . an 

p = - - = -  
a<m,.m2 

m L +ma < N 
a q  

Let ( q o , p o )  be an initial condition for a classical trajectory ( q ( t ) , p ( t ) )  of (32) and 
set qo = A n  cos9, po = K& sin 8 for C = [ ( ~ , , / A ) * + ( P ~ / K ) ~ ] / ~  2 0 and 0 C 8 < 2a. 
Here, A, K are the scales introduced in the previous section Note that the scale of 
IqGol can be made macroscopic, or large compared with h, by choosing C sufficiently 
large. 

Consider now the contraction of wi to t3 given in the previous section, where the 
number states are eigenvectors of a(O)a(O), and a(0) and E(0) are related to Q(0) 
and P(0) ss in (7). Again set &, = c,Q, P, = E,P, I, = I, and let Q,,P,,I, 
have the representation (ZO), at t imet = 0. Then from (20) 

L ( W ( m l r  = +(m)r (33) 

[(Qm(O)/J)' + (Pm(O)/K)%<m)r = [(2Mm + 2 r +  1 ) / 4 + ( m ) r  (34) 
for r 2 -M,. The action of&,(O), P_(O) and I,(O) on the vectors for all 
integers r is given by (21), where Q,(C!, P,(O) and I,(O) are the operators obtained 
in the contractim limit. On the generalized eigenvectors @,(C,8), 

and 

Q,(o)*w1C,8) = qo*,(C,@) 

Pm(O)*w(C,@) = P O * , ( C , ~ )  (35) 
~,(oP,(c.~) = *,(c,0) 

in the sense described in (25). 

be deternnned by the operator differential equations 

Qm(t) = a [ Q r n ( t ) ,  Rml 

The time evolution of the contracting operators Q,(tj, P,(t), I,(t) is taken t o  

1 

= ~,,,,,[Q,(t)"'P,(t)m~-l + P,(t)"2-i&,(t)"i] 

1 

o6m,.ma ~ 

m,+mo<N 

P,(t) = - IfLh [P (t)-H,I (36) 



Formal solutions in terms of a unitary evolution operator U,(t)  can he given in the 
form 

QmW = ~,,,(~)'Q,(O)U,(i) p,(f) = U,(t)'P,,,(O)U,(t) 

= L(0) U&) = ,Hm+La, (38) 

The power of 6, appearing in (36) and (38) is determined by th: consideration that 
(36) should in general not diverge or vanish as E ,  i 0. 

Let (. , .), be the inner product of the Hilbert space H, with respert to which the 
$(,,, are orthonormal for integers F > -M,. Let S, denote the linear span of these 
vectors and let I, denote its dual space which is associated with all formal vectors 
of the form where the e, are complex numbers. Let & denote the 
identity operator on H,,, and set 

From the definitions (39) and (23) of @,,,(C,@) and @,({,e) respectively, and the 
definition of the contraction of a sequence of representations, I t  follows thht 

m-m liin Q,(O)@,(C,@) = Q,(O)@,(C,O) = qo*,(C.@) 

lim W)*,,,(f,@) = I,(0)@w(C,@) = @,(C,@) 

"I-m lim p,,,(O)@,(C,@) = P,(O)@,(C,@) = p 0 @ , ( C . @ )  (40) 

m-m 

in the sense that 

lim (a,((, @), Q,(O)V+~),.), =(@,(C e), Q,(0)$pm),)w =eo(@,(C 1 "b(m)7)m 
m-w 

m-m 1rm (@~(f ,@) ,p~(o)~( , )~) ,=(@,(C,@),  p,(O)ll(,),),=~~(o,(C,@), $(,)A 
iim (Qn,(<, O ) ,  i,,,(uj&,)r j, = (@-(<, Oj, Im(ij)+(,,v j, =(@w(f, Si, @+wl,)w 

In-m 

(41) 

for all T. This result extends to any finite polynomial A(&,(O),P,(O),I,(O)) 
(cf condition l(d) of definition 2 2, and the second remark following; the rep- 
resentations of w,  considered here are column finite). The vectors @,,,(C,9), 
q~,,,(u),P,(u), i m ( u ) ) w m ~ ~ , o )  are associaceo wmn eremrrirs OL A , ,  wiiiir LU'J "CL- 

tors @m(C,b'), A(Qm(0),P,(O),I,(O))Qi,(C,8) are associated with elements of 7,. 
The next step needed in the argument is to show that (40) can he extended to 

times t > 0. This is difficult to establish for general polynomial Hamiltonians, even in 

' , A  In\ In\ I In\.- I.. "\ .~ ~~~~ .-.~, ...:*,~ ..-~~-.-A. L-n- -L:,- 'LA ..-̂  
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one dimension Let Q,(t) ,  Pm(t) be the solution of thr operator differential equations 
(36) with the initial condition Q,(O), Pm(0) as given in (33) For r.6 2 -Mm, let 

[Qm(t)lr8 = (+(m)rvQm(t)$(m)s)m [Pm(!)Irs = (+4m)prPm(t)*(m)s)m (42) 

denote the matrix elements of Q,(t) and Pm(t) in the $Cm I basis Recall that Q,(O) 
and P_(O) ~. have already been defined as the limits of &,lo) and Pm(@), in the sense 
that 

for all P,S Define Q,(t) and P,(t) similarly in terms of the limits 

meaning pointwise convergence in t for all integers r,s 

is then established through the extexsion of (40) to times t > 0, so that 
It IS cosjectured that the connection between the quantum and classical dynamics 

m-m hm Q,(t)*,(C,@) = &,(t)@,(C,@) = W U C , @ )  

m-, Ilm Pm(t)*,,,(C,@ = P,(t)Q,(C,o) =p(t)*,(C,O) (45) 

Iim fm(t)Qm(C,@) = f m ( W m ( C , @ )  = M&@) m-m 

where ( q ( t ) , p ( t ) )  is the classical trajectory having initial value (qo,po). Then the 
generalized one-dimensional subspace spanned by @,(C,S) will Se invariant under the 
rpt:nn &n /+I D I + >  .=.-a r f+b :.. +L. n..-+---+~-- I:-:& --a .AI h- -~ A-....---..- 

of those operators, corresponding to eigenvalues on a classical trajectory. 
Key steps in this argument that have yet to be established for general Hamiltonians 

involve showing that (a) the vectors $(m,p lie in the domains of Qm(t) and Pm(t), sa 
that the matrixelements (42) of these operators are well defined in this basis; (h) the 
limits (44j exist, and (c) the results (45) follow. 

Rather than exploring these difficult problems for general Hamiltonians a t  this 
stage [IOj, aimpie systems for which the idea can he pushed through completely are 
considered as support fer the conjecture. 

-.".-.. .,. wm,-,, ' ,,lJ Yll" ",'J 111 U L L C  w L L u L - . Y . u L .  .IIIIIU, all" v1.1 "= CLXI c.&clI*p,,Lc 
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4.1. Systems with linear dynnmtcs 

It is easy to establish the desired results for Hamiltonians (28) with n g 2, which lead 
to linear dynamics. For example, consider Ihe simple harmonic oscillator Hamiltonian 

R J B Fawcelt and A J Bracken 

R(Q, P )  = P 2 / ( 2 M )  + ( 1 /2 )MwzQ2 (46) 

where M is the mass of the oscillator and w is the angular frequency of oscillation 
The classical Hamiltonian function is 

(47) 

from which the classical dynamical equations are q = p / M  and p = - M d q ,  with 
general solutions of the form 

W % P )  = P Z / ( Z M )  + (1/2)Mw2q2 

(48) 
q(t) =qoco.swt+-sinwt Po , p(t) =pocoswt - Mwgosinwt 

P?W 

where (qoapQ)  = (q(O) ,p(O))  is the initial condition of the classical trajectory 
For each m 

H(Q,, P.A.= P:,/2M + (1/2)Mw2Qz. 

Q&) = P&)/M P,(t) = -MwZQ_(t) (50) 

(49) 

Consequently 

which have general so!utions 

m s i n w t  pm(t) = P,(o)coswt - ~ u ~ , . , ( o ) s i n w t  
M W  

Q,(t) = Q,(O)coswt + 
(51) 

Using (33) and (ZI), these equations con Frge in the limit m - m, in the sense of 
(43) and (44), to 

&,(t) = Q,(O)coswt + - (O’sinwt ~ _ ( t )  = ~ ~ ( 0 ) c c s w t  - MwQ,(O)sinwt. 
Mw 

(52) 

I t  then follows that Q _ ( f ) @ _ ( ( , @ )  = q( t )@_(C,B)  and P_(t)@&,@) = p(t)@,(C,@) 
as in (45), giving the conjectured behaviour. 

4.2. A non-linear oscillator 

This system has been discussed by Milburn 171, Ynrke and S-ler [8] dnd Daniel and 
Milburn [Y], as a model non-lmea! system which is exactly soluble, but whose quantum 
dynamia shows, at least for sufficiently large times, a departure from the behaviour 
expected classically. Systems of this type have also been discussed by Berry [Il l .  It is 
therefore of interest to see that the prment approach yields the classical dynamics in 
the contraction limit. Let H,(Q, P) = P2/2M+(1 /2 )MwZQ2 be the simple harmonic 
oscillator Hamiltonian operator described above and let the Hamiltonian operator 
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for the system be ff(Q, P )  = Ho(Q, P) + pH,(&, P)', where p is a constant with 
dimensions of [energy]-'. The Hamiltonian function for the corresponding classical 
system is 

an& coFi6pon&;ng e:azea; dyEaT,icd eq-jatioiis 

q = [ 1 +  2pHo(q ,p ) ]p /M = Rp/M P = -Mw2[1 + 2PHo(PtP)lP = -Mw2Rq 
(54) 

where 

n = 1 + ZpH,[p,p) E 1 + &$/M + ML%J. (55) 

Alternatively, i; = -w2C12q, i; = -wZR2p. Snnce Ho and R are constants of the motion, 
these equations have general solutions of the Form 

-sinwRt . Mu (56) q(t) = q,coswRt+ Po p ( t )  = pocoswRt - Mwq,sinwRt 

where the frequency of oscillation wR of the non-linear oscillator is explicitly energy 
dependent. 

and IE = &%, and set E = Tw. 
Then for each m 

*(Qm*Pm) =Ho(Qm,Pm)+~H,(Qm,Pm)' 

Suppose for convenience that X = 

= E [ ( ' p ~ / 2 K 2  + G;/2#2) + ( p / " 2  +. @/zA2;2] $7) 

Consequently, for each m, the quantum operstor equations of motion are 

E 

1 
M 

Qm = + p(Ho(Qml P,Vm + PmHo(Qm, ~ ~ , ) ) l  
= -[PA1 + ~PH,(Q,, P,)) + W&MwQ,,,I 

(58) E 
Pm =-\.IQm +P(*O(Q,,PAQ~ +Q,Ho(Q,,Pm))I 

= -Mw2[Qm(l + 2pHo(Qm,PnJ) - ipEc;P,/Mw] 

where c, IS the contraction parameter. Now 

(6, * iP,,,iMw) = (Q, f iPm/Mw)[riw(4, + 2pH0(Q,, P,)) + ipEriwll,J 

which has general solutions 

(59) 

(Q,(t) * iP,(t)/Mu) = (Q,(o) =! ipm(0)/Mw)eT'"(P-+2~H.)r+lpErrurP,. (60) 
Since 

(61) (/,(,,,, eT~-(&+2rH~)r - 6 ei*~Il+pE(2M,+2r+l)/mll - r b  
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which approaches 6,BeT‘w(iC2PE~)t as m - m. then in the contraction limit 1121 
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(62) 
eFrw(l,+ZpHo ) t + i u E e ~ u f L  - eTw(I+ZpE( ) l  

nm 

and 

(Q,(t) * iP,(t)/Mw) = (Q,(O) f iPm(0)/Mu)e~’U(i+Z’E~)’. (63) 

But 1 i ZpEC = 1 + 2~Ho(qo,po)  = 11, so 

1 
MW Q,(t) = Q,(O)cosuRt + -P,(O)sinuRf 

P,(t) = P,(O)cosvQt - MwQ,(O)sinuRt. 
(64! 

As in the previous two examples. it  is lmmediately seen that Q,(t)@,(C,@) = 

A feature of these examples is that the functions Q,(,(t) and P,(.?) exhibit a simple 
dependence on &,lo), P,(O) and t which facilitates computation of their behaviour in 
the contraction limit, even though the last example has an added dependence on the 
operator go. In fact, any quantum mechanical system with asingle degree of freedom 
whose operators Q(t),  P( t )  in the Heisenberg picture are polynomial in Q(O), P(0) 
and analytic in t ,  can obviously be treated directly in this manner. More importantly, 
i t  can be seen explicitly that (45) holds in each case, so that the one-dimensional 
gene:alized subspace spanned by @,((,e) remains invariant under the action of these 
operators, and is an eigenspaee of (Q,(t), Pm(t)) corresponding to eigenvalues on a 
trajectory of the classical system. Furthermore, 

q(t)*,(C,B) and p&P,(C, 0) = p(t)Q,(C, 0). 

m-m lim A(Q,(t), p,,,(t)!*,(C,@) = A(Qm(th P,(t))*,(C,@) = A(n(t)M))@,(C,0) 

(65) 

for arbitrary polynomials A(Q,P)  A particular case of interest is when A(Q,P) is 
the Hamiltonian operator H(Q,P) ,  and A(q(t),p(t)) is the classical energy. It can 
also be seen that for each example 

1 
In-m lim Q,(t)@,(C,@) = A$, =IQ,,,, H(Q,,,,Pm11*,(5,fJ) 

= Q,(t)*,(w 
= 14>H(%P))* , (C,@)  

= P&)*m(c,o) 
= {P?H(%P))*,(C!@) 

(66) 1 
m-m Iim Pm(t)*,(C,O) = ,& i$,[P,, W(Q,,,~J”)l*m(C,e) 

where { .  , .) is the classical Poisson hracket. 

corresponding to the same C value but possibly different 0 values, el and @,, then 

pm(t)*m(C*8,) =P,(t)*w(C,O,) 

If (gl(0),pi(O)) and (qz(0),p,(O)) are two initial conditions of the classical system 

Iim Q,(t)@,(C,@,) = q , ( tPm(C$4)  m-m 
(67) 



for any finite polynomial A(Q,jt), P_( t ) ) .  
A super-selection rule is a statement that rules out certain vectors in the Hilbert 

space asseciated with a quantum system as not corresponding to physically realisable 
states [:3]. In this context, the linear superposition (a,xl + azxz), of two different 
physicidly realisable states xi  and xz would be considered physically unrealisable if 
there fxists no observable A such that ( x I , A x 2 )  # 0. 

For the Todel one-dimensional systems described above, suppose that. the only 
observables correspond to elements ofthe enveloping algebra generated by Q,  P and Z; 
this enveloping algebra contains If which is polynomial in Q and P by hypothesis. As 
has been shown above, the representations of the enveloping algebra of w1 generated 
by Q,(O), P,(O) and I,(O) are contracted to the representation of the enveloping 
algebra of t ,  generated by &,io), Pm(0) and Z,(O) Furthermore, it  follows from 
(65) and (66) that each of the generalized one-dimensional subspaces associated with 
the ureducible representations of 1, obtained in the Contraction limit, is stable under 
the action of the dynamics and of the enveloping algebra generated by the observables 
Q,(t), P,(t), and is associated with a classical trajectory. 

I t  can now be seen in addition that there are in the classical (contraction) limit, 
natural superselection rules The vectors @,((,e) can be taken to be physically 
realisable because they are eigenvectors of the contracted Hamiltonian operator If-, 
as a result of (40). but superpositions of the vectors @,((,e) with different 9 are 
unphysical as a result of(69) 1141 Thus the Hilbert space structure becomes redundant 
in Ihe contraction limit; the vector space H, is effectively reduced to a union (rather 
than a direct sum) of generalized one-dimensional subspaces [5] 

To summarize: between any two of these subspaces tiiere is a superselection rule; 
each subspace remains invariant under the dynamics; and each is an eigenspace of 
(Q,( t ) ,  Pm(t))  corresponding to eigenvalues ( q ( t ) , p ( t ) )  on a classical trajectory. 

5. Concluding remarks 

For the simple systems considered in this paper, consideration of &he classical limit in 
terms of a Lie algebra contraction as described above provides a new way of viewing 
this limiting process. A distinctive and attractive feature of this approach is that 
quantum mechanics and classical mechanics are treated in a unified way. In each 
case one has a representation of a kinematical algebra and its enveloping algebra 
in a Hilbert space In the classical case, this algebra is Abelian; the representation 
is a direct integral of one-dimensional irreducible Hermitian representations with a 
superselection rule between each of the corresponding one-dimensional subspaces. It IS 
conJectured that similar results hold for an arbitrary polynomial Hamiltonian operator 
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H(Q, P) but clearly, general technical conditions need to he investigated under which 
(45) is satisfied [lo]. It is hoped that this will he the topic of future studies. 

I t  should he remarked in closing that there is a natural and direct generalization 
of the ideas presented here to the classical limit of a quantum system with n degrees 
of freedom, involving the contraction [IO] of representations of its kinematical algebra 
w, to representations of the Abelian Lie algebra t,,+,. For example, similar results to 
the above are obtained for the n-dimensional analogue of the non-hear system with 
Hamiltonian (53). so the approach is certaicly not limited to onedhensional systems 
Indeed, there is no difficulty in obtaining the generalization of (40) to the case of n 
degrees of freedom, whatever the Hamiltonian. However as noted in the introduction, 
the important question as to whether equations (45) hold for non-integrable systems 
remains unanswered. 

Other features that can arise for systems with several degrees of freedom are ac- 
cidental symmetry algebras and dynamical (spectrum-senerating) algebras. The rela- 
tionship between classical and quantum symmetries is not always obvious [15], and as 
suggested by a referee of the first version of this paper, it would therefore be interest- 
ing to examine the behaviour in the classical contraction limit of the representations 
of such algebras. 

R J B Fawcefl and A J Bracken 
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Appendix 

It  could be expected from a consideration of (23) that there might be a sequence 
of w, representations which when contracted gives a representation of t ,  equivalent 
to a direct integral of one-dimensional Hermitian representations labelled (c, 8) for 
0 < C < 03, 0 < 8 < 2u. This appears not to be possible. However a partial result in 
this direction can be obtained. 

A construction is now given for the contraction of a sequence of infinitedimensional 
Hermitian irreducible mattix representations of w1 to an infinite-dimensional matrix 
representation o f t ,  which is decomposable into a countably infinite direct sum of 
representations oft, of the type given in (11). 

The positive rationals are ordered without repetition in some way so that all of 
them are included. For each positive integer n, a value of the contraction parameter 
e, = 1 1 6  is chosen so that a nucleus of (2n + 1) basis vectors can be established 
for each of the n subrepresentations oft, parameterized by the first n rationals. As n 
gets larger, the nuclei of more subrepresentations are included in the scheme for the 
basis corresponding to the particular value of the contraction parameter. 

Let {rt}go enumerate the positive rationals in some manner such that rt = rt, 
(j t = t‘. Then for each n > 1, let 6 be the positive rational number defined by 
6 = oGt,t,Gn Irt - rt,l and choose m, and en satisfying mnc: = 1 and m, < mncl so 

that ,,<:;:<, I[r,mJ - [rt,m,]l > 2n If 6 = 4 / 6 ,  for positive integers 6,,6,, where 
gcd(6,,6,) = 1, then m, = 2(n + 1)6, is a sufficient although not ‘minimal’choice. 

,,” 

\ 1 .  



Classrcal lrmtt os n conlrnctron 2761 

Then ler the first (n + l ) ( n  + 2)/2 basis vectors in the new basis be given by 

~(m)p(p+l ) /Z+S  = c[vp-qm"l+sq (A I )  

for p = 0,. . . ,n ;  q = 0, , , , p ,  where {s,}Fn = {0, -1,1, -2,2,. . .) is the sequence 
with elements s2(S_l, = , q ;  1 and szq-i = -q for positive integers q .  

In the contraction limit n + m, (m, - m), the representation IS decomposable 
into a countable infinity oft, representations of the type given in (16) with C replaced 
by rt .  Associated with each t ,  representation, there are common generalized position- 
momentum eigenvectors @(r,,8) for which 

Qw*(rt9@) = A &  cos8@(rt,8) 
= K& sin 8*(ri, 8) pmwt> 8) 

I,*(rt,e) =*(r t , 8 )  
(Nrt,,e'),*(%@))m =s i ,@-  0 

(A2) 

Since each of the infinite-dimensional representations of t ,  in the direct sum is equiv- 
alent to a direct integral of one-dimensional irreducible matrix representations, the 
direct sum representation itself IS equivalent to the representation 
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